Search results for "Icosahedral symmetry"
showing 10 items of 44 documents
A computational study of the lowest singlet and triplet states of neutral and dianionic 1,2-substituted icosahedral and octahedralo-carboranes
2006
This work introduces a calibrated B3LYP/6-31G(d) study on the electronic structure of singlet and triplet neutral species of 1,2-substituted icosahedral 1,2-R(2)-1,2-C(2)B(10)H(10) and octahedral 1,2-R(2)-1,2-C(2)B(4)H(4) molecules with R = {H, OH, SH, NH(2), PH(2), CH(3), SiH(3)} and their respective dianions formed by proton removal on each R group. A variety of small adiabatic singlet-triplet gaps DeltaE(ST) are obtained from these systems ranging from 2.93 eV (R = NH(2)) <or= DeltaE(ST) <or= 3.98 eV (R = SiH(3)) for the icosahedral neutrals and 1.56 eV (R = NH(2)) <or= DeltaE(ST) <or= 4.13 eV (R = SiH(3)) for the octahedral neutrals, these gaps being globally smaller for the dianionic s…
Instability of cuboctahedral copper clusters.
1992
Equilibrium structures of copper clusters up to 10 000 atoms are studied using molecular-dynamics and effective-medium theory. Icosahedral closed-shell clusters are most stable up to \ensuremath{\sim}2500 atoms and the Wulff polyhedra are favored for larger clusters. Cuboctahedral closed-shell clusters up to \ensuremath{\sim}2000 atoms are unstable. They undergo a nondiffusive transition to an icosahedral structure at low temperatures and melt directly above the fcc-cluster-melting temperature. The melting temperature decreases with decreasing cluster size but not as deeply as has been reported for pure metals.
Electronic Structure and Bonding of Icosahedral Core–Shell Gold–Silver Nanoalloy Clusters Au144–xAgx(SR)60
2011
Atomically precise thiolate-stabilized gold nanoclusters are currently of interest for many cross-disciplinary applications in chemistry, physics and molecular biology. Very recently, synthesis and electronic properties of "nanoalloy" clusters Au_(144-x)Ag_x(SR)_60 were reported. Here, density functional theory is used for electronic structure and bonding in Au_(144-x)Ag_x(SR)_60 based on a structural model of the icosahedral Au_144(SR)_60 that features a 114-atom metal core with 60 symmetry-equivalent surface sites, and a protecting layer of 30 RSAuSR units. In the optimal configuration the 60 surface sites of the core are occupied by silver in Au_84Ag_60(SR)_60. Silver enhances the electr…
Role of the central gold atom in ligand-protected biicosahedral Au 24 and Au25 clusters
2013
The crystal structures of the ligand-protected clusters [Au24(PPh3)10(SC2H4Ph)5Cl2]+ and [Au25(PPh3)10(SC2H4Ph)5Cl2]2+ have been elucidated recently, and they comprise the same biicosahedral structural motif for the Au core. The only difference is the central Au atom joining two icosahedra which is absent in the Au24 cluster. On the basis of density functional simulations, we have evaluated the structural, electronic, optical, and vibrational properties of the clusters in question with a full presentation for the thiolate and phosphine side groups. Our spherical harmonics analysis of the electronic structure shows that the chemical stability of both clusters can be understood based on an 8 …
Continuum elastic sphere vibrations as a model for low-lying optical modes in icosahedral quasicrystals
2004
The nearly dispersionless, so-called "optical" vibrational modes observed by inelastic neutron scattering from icosahedral Al-Pd-Mn and Zn-Mg-Y quasicrystals are found to correspond well to modes of a continuum elastic sphere that has the same diameter as the corresponding icosahedral basic units of the quasicrystal. When the sphere is considered as free, most of the experimentally found modes can be accounted for, in both systems. Taking into account the mechanical connection between the clusters and the remainder of the quasicrystal allows a complete assignment of all optical modes in the case of Al-Pd-Mn. This approach provides support to the relevance of clusters in the vibrational prop…
What Is the Limit of Atom Encapsulation for Icosahedral Carboranes?
2015
The stability of endohedral carboranes X@{1,n-C2B10H12} (X = Li(+), Be(2+); n = 2, 7, 12) and X@{CB11H12(-)} (X = Li(+), Be(2+)) is studied using electronic structure calculations with the B3LYP/6-311+G(d,p) model. Our calculations suggest that all endohedral compounds are local energy minima; for the exohedral complexes X···cage, the global energy minimum always corresponds to the X atom above a triangular face of the icosahedron. In the latter the X atom is furthest apart from the carbon atoms of the cage. As opposite to exohedral {Be(2+)···cage} complexes, no global energy minima were found for exohedral complexes {Li(+)···cage} whereby a carbon atom is present in the triangular face of …
Assembly of the Major and the Minor Capsid Protein of Human Papillomavirus Type 33 into Virus-like Particles and Tubular Structures in Insect Cells
1994
Native virions of human papillomaviruses (HPV) can be isolated from genital lesions only in very limited amounts. Recent studies have shown that virus-like particles can be obtained by expression of the capsid proteins using vaccinia virus recombinants or the baculovirus system. We now present the first detailed characterization of virus-like particles of a human papillomavirus associated with malignant genital lesions, HPV-33, produced in high yield using the baculovirus expression system. Assembly of the major capsid protein L1 alone or together with the minor capsid protein L2 has been obtained. Both spherical virus-like particles of 50-60 nm diameter and tubular structures of either 25-…
Boson peak and hybridization of acoustic modes with vibrations of nanometric heterogeneities in glasses
2007
9 pages; International audience; The low-frequency dynamics in glasses is compared with that in icosahedral quasicrystals. For both arrangements of matter, the existence of nanometric heterogeneities, implying the existence of a nanometric inhomogeneous elastic network, is expected to play a crucial role. Thanks to this comparison, mostly based on inelastic x-ray (neutron) scattering data, it is proposed that the excess of vibrational density of states observed in both materials is due to the hybridization of longitudinal and transverse acoustic modes with modes localized around the heterogeneities.
Effects of the cluster surface on the electronic shell structure: faceting, roughness and softness
1995
Several simple models have been used to study the effects of the surface on the electronic shell structure in metal clusters. The main results are as follows: The icosahedral clusters have the same electronic shell structure as the sphere up to about 1000 atoms. The surface roughness causes the distribution of the level spacings to be a Wigner distribution. By varying the softness of the potential we can obtain potentials where the simplest classical orbits are the ‘five-point star’ or even ‘the three-point star’.
On the shell structure and geometry of monovalent metal clusters
1991
The Huckel model is used to study the electronic structure of monovalent metal clusters. In an fcc cluster the Huckel model gives an estimate to the electronic structure of a free electron cluster. It is shown that the surface faceting of the fcc cluster can destroy the electronic shell structure already when the cluster has about 100 electrons. In the Huckel model the icosahedral structure has smaller total energy than the fcc structures, from which the Wulff construction has the smallest energy already when the cluster has 600 atoms.